Bilinear Hilbert transforms and (sub)bilinear maximal functions along convex curves

نویسندگان

چکیده

In this paper, we determine the $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness of bilinear Hilbert transform $H_{\gamma}(f,g)$ along a convex curve $\gamma$ $$H_{\gamma}(f,g)(x):=\mathrm{p.\,v.}\int_{-\infty}^{\infty}f(x-t)g(x-\gamma(t)) \,\frac{\textrm{d}t}{t},$$ where $p$, $q$, and $r$ satisfy $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$, $r>\frac{1}{2}$, $p>1$, $q>1$. Moreover, same property holds for corresponding (sub)bilinear maximal function $M_{\gamma}(f,g)$ $$M_{\gamma}(f,g)(x):=\sup_{\varepsilon>0}\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon}|f(x-t)g(x-\gamma(t))| \,\textrm{d}t.$$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Hilbert Transforms along Curves I. the Monomial Case

We establish an L2×L2 to L estimate for the bilinear Hilbert transform along a curve defined by a monomial. Our proof is closely related to multilinear oscillatory integrals.

متن کامل

Uniform Bounds for the Bilinear Hilbert Transforms

It is shown that the bilinear Hilbert transforms Hα,β(f, g)(x) = p.v. ∫ R f(x− αt)g(x− βt) dt t map Lp1(R) × Lp2(R) → Lp(R) uniformly in the real parameters α, β when 2 < p1, p2 < ∞ and 1 < p = p1p2 p1+p2 < 2. Combining this result with the main result in [9], we deduce that the operators H1,α map L2(R)×L∞(R) → L2(R) uniformly in the real parameter α ∈ [0, 1]. This completes a program initiated...

متن کامل

The Bilinear Maximal Functions

The bilinear maximal operator defined below maps L × L into L provided 1 < p, q <∞, 1/p+ 1/q = 1/r and 2/3 < r ≤ 1. Mfg(x) = sup t>0 1 2t ∫ t −t |f(x+ y)g(x− y)| dy In particular Mfg is integrable if f and, g are square integrable, answering a conjecture posed by Alberto Calderón. 1 Principal Results In 1964 Alberto Calderón defined a family of maximal operators by Mfg(x) = sup t>0 1 2t ∫ t −t ...

متن کامل

Maximal cluster sets of L-analytic functions along arbitrary curves

Let Ω be a domain in the N -dimensional real space, L be an elliptic differential operator, and (Tn) be a sequence whose members belong to a certain class of operators defined on the space of L-analytic functions on Ω. It is proved in this paper the existence of a dense linear manifold of L-analytic functions all of whose nonzero members have maximal cluster sets under the action of every Tn al...

متن کامل

L Estimates for Bilinear and Multi-parameter Hilbert Transforms

C. Muscalu, J. Pipher, T. Tao and C. Thiele proved in [27] that the standard bilinear and bi-parameter Hilbert transform does not satisfy any L estimates. They also raised a question asking if a bilinear and bi-parameter multiplier operator defined by Tm(f1, f2)(x) := ∫ R m(ξ, η)f̂1(ξ1, η1)f̂2(ξ2, η2)e 1122dξdη satisfies any L estimates, where the symbol m satisfies |∂ ξ ∂ ηm(ξ, η)| . 1 dist(ξ,Γ1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2021

ISSN: ['1945-5844', '0030-8730']

DOI: https://doi.org/10.2140/pjm.2021.310.375